
Vyšš́ı odborná škola, Středńı škola,

Centrum odborné př́ıpravy

ABSOLVENTSKÁ PRÁCE

Postprocesor robota pro metodu Laser

Shock Peening

Sezimovo Úst́ı, 2022 Autor: Marek Böhm

i

ii

Declaration

I declare that I have prepared my graduation thesis independently, and I have used

only the materials (literature, projects, software, etc.) listed in the attached list.

In Sezimovo Úst́ı on
Signature

iii

- / a

-

29.4.2022
Bihm

Acknowledgments

I want to thank my supervisor Mgr. Bc. Miroslav V. Hospodářský for the invaluable

advice and help in creating this graduation thesis.

iv

Anotace

Laser shock peening je proces povrchové úpravy použ́ıvaný ke zlepšeńı fyzikálně-

chemických vlastnost́ı (únavová životnost, odolnost proti korozi) kovových součást́ı. Laser

shock peening vnáš́ı pod povrch kovových materiál̊u zbytková napět́ı. Aplikace procesu

laser shock peening v posledńıch letech rostou, a to předevš́ım d́ıky stále rostoućım

energíım a klesaj́ıćım cenám laserových systémů s parametry vhodnými pro tento proces.

Tato práce řeš́ı problém, jak lze software RoboDK a jeho Python application user interface

efektivně využ́ıt k vytvářeńı programů robotických ramen pro proces laser shock peening.

Problém je vyřešen úpravou postprocesoru RoboDK. Řešeńı umožňuje vytvářet programy

pro robotická ramena speciálně uzp̊usobené pro proces laser shock peening. Hlavńı

př́ınos práce je zjednodušeńı vytvářeńı programů robotických ramen pro d́ıly se složitou

geometríı.

Kĺıčová slova: RoboDK; pr̊umyslov́ı roboti; pr̊umyslová robotická ramena;

zabráněńı koliźım; simulace robotických ramen; postprocesory robotických ramen.

v

Annotation

Laser shock peening is a surface treatment process used to improve the physico-

chemical characteristics (fatigue life, corrosion resistance) of metallic components. Laser

shock peening induces residual stress beneath the treated surface of metallic materials.

Laser shock peening applications have been on the rise in recent years, mainly due to

the ever-increasing energy and decreasing price of laser systems with parameters suitable

for this treatment process. This graduation thesis seeks to solve the following problem:

how can RoboDK with its Python application user interface be effectively used to gen-

erate robotic arm programs for laser shock peening applications. The problem is solved

by modifying an existing RoboDK post processor. The created solution provides the

possibility of generating robotic arm programs specially tailored for laser shock peening

applications. The main contribution of this graduation thesis is to simplify the generation

of robotic arm programs for parts with complex geometries.

Key words: RoboDK; industrial robots; robotic arms; collision detection;

robotic arm simulation; robotic arm post processors.

vi

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Basics of industrial robotics 3

2.1 Classification of handling devices . 4

2.2 Industrial robotic arms . 5

2.2.1 Classification of industrial robotic arms and their structures . . . 6

2.3 Industrial robotic arms programming . 7

2.3.1 Offline programming . 8

3 Laser shock peening 11

3.1 Laser shock peening overview . 12

3.1.1 Laser shock peening process . 12

3.1.2 Plasma, shock wave and residual stress generation 13

3.1.3 Transparent overlay and absorbent coating 15

3.1.4 Laser shock peening overlapping strategy 16

3.1.5 Laser system parameters affecting the LSP process 17

3.1.6 Laser shock peening applications 19

3.2 Laser shock peening station and laser sources 20

3.2.1 LSP station layout . 20

3.2.2 Bivoj laser system . 21

3.2.3 Litron LPY ST 7875-10 2HG laser 23

3.2.4 FANUC M-20iA/20M robotic arm 23

3.2.5 Electrical connection between controller and laser 24

3.2.6 LSP process example . 26

vii

4 RoboDK software 29

4.1 RoboDK overview . 29

4.1.1 RoboDK features . 30

4.2 RoboDK robotic arm library . 31

4.3 RoboDK interface . 31

4.3.1 RoboDK station . 31

4.4 RoboDK API . 32

4.5 RoboDK Add-ins . 33

4.5.1 RoboDK Add-in for SolidWorks 33

4.6 RoboDK collision detection . 35

4.7 RoboDK post processors . 35

5 Post processor implementation 37

5.1 FANUC robotic arms programming specifics 37

5.1.1 FANUC Roboguide . 37

5.1.2 FANUC robotic arm controller programming languages 38

5.1.3 Teach pendant program structure 39

5.1.4 Compiling a FANUC teach pendant program 40

5.2 Robot machining projects in RoboDK . 41

5.2.1 Setting up a curve follow project in RoboDK 42

5.3 RoboDK API . 43

5.3.1 Python API for RoboDK . 44

5.4 RoboDK post processors . 44

5.4.1 RoboDK post processor workflow 45

5.4.2 RoboDK preprocessed file . 45

5.4.3 Selecting a post processor . 48

5.4.4 Post processor example and post processor example output 48

5.5 FANUC R-30iA RoboDK post processor 51

5.5.1 Modifying the FANUC R-30iA post processor methods 51

5.5.2 Example output of the modified FANUC R-30iA post processor . 54

6 Testing of robotic arm program 57

6.1 Simulation . 57

6.2 Testing on the physical robotic arm . 59

6.3 Results of simulation and testing . 59

viii

6.3.1 Results of simulation . 59

6.3.2 Results of testing on a physical robotic arm 60

7 Conclusions and future work 61

7.1 Conclusions of the thesis and future work on thesis 61

Bibliography 63

Appendices I

A Content of the enclosed CD/DVD III

B Used software and software libraries V

C Graduation thesis timetable VII

D English-Czech glossary IX

ix

x

List of Figures

2.1 Classification of handling devices . 4

3.1 Schematic configuration of laser shock peening process 13

3.2 Residual stresses formation with LSP . 14

3.3 Laser shock peening strategy – one layer consisting of four sequences . . 16

3.4 Laser system Bivoj: Diode-pumped solid-state (DPSSL) laser 21

3.5 Schematic layout of LSP station and photography of LSP station 21

3.6 Spatial profile of laser beam at output of Bivoj 10 J amplifier 22

3.7 Temporal profile of laser beam at output of Bivoj 10 J 22

3.8 Litron LPY ST 7875-10 2HG laser at HiLASE centre 24

3.9 Block diagram of the electrical connection 25

3.10 Timing diagram for triggering of flashlamp and the Q-switch 25

3.11 FANUC M-20iA/20M industrial robotic arm and FANUC R-30iB controller 26

3.12 Network diagram of the robotic arm workcell 27

4.1 RoboDK version 5.2 running on Windows 10 32

4.2 SolidWorks RoboDK Add-in toolbar . 33

4.3 SolidWorks RoboDK Add-in settings window 34

4.4 Example of a collision map . 35

5.1 FANUC Roboguide workcell – user interface example 38

5.2 Example of a TP program with some typical program elements 40

5.3 Example of motion instruction . 41

5.4 Curve follow project settings in RoboDK 43

5.5 RoboDK post processor workflow . 45

6.1 CAD drawing of forging die . 58

6.2 RoboDK workcell with forging die . 58

6.3 LSP process performed on the forging die 60

xi

xii

List of Tables

3.1 Litron LPY ST 7875-10 2HG parameters 23

3.2 Experimental parameters of laser shock peening 26

6.1 Experimental parameters of LSP process on forging die 59

xiii

xiv

Chapter 1

Introduction

Laser shock peening (LSP) is a surface treatment process used to prolong the fatigue

life of metallic components. LSP is successfully used in industrial applications, and there

is a tremendous commercial interest in applying LSP. The layout of most modern LSP

stations comprises a laser source and an industrial robotic arm holding the sample to

be processed. One such LSP station is located at the HiLASE centre, Czech Republic.

LSP is suitable for treating parts of complex geometry, such as forging dies and cutters.

However, this advantage comes with a new challenge: to program the robotic arm in

such a way as to ensure an optimal LSP process on parts with complex geometry. These

programs can be generated by using Computer-Aided Manufacturing (CAM) software.

A critical feature of every CAM software is the post processor of the CAM software.

A post processor defines the vendor-specific rules a robotic arm program must follow.

In other words, post processors serve as tools to convert a simulation to vendor-specific

robotic arm programs [1].

The potential of high-energy pulsed laser systems to create plastic deformation was

first discovered by White in 1963 in the USA [2]. The confined ablation mode in air was

first recognised by Neuman in 1964 [3]. During the 1970s, research into the possible ap-

plications of LSP continued. During the next decade, in the 1980s, a team centred around

Remy Fabbro at the Ecole Polytechnique made significant theoretical and experimental

contributions to LSP [4]. At the same time, researchers at the Battelle Memorial Insti-

tute in Columbus, Ohio, developed a prototype pulsed laser to demonstrate the industrial

viability of LSP. The 1990s marked the decade when LSP saw its first commercial appli-

cations. Notably, General Electric Aviation used LSP to solve Foreign Object Damage

(FOD) on fan blades of turbofan jet engines [5]. The 2000s and 2010s saw the rise of

companies performing LSP commercially [6].

1

2 CHAPTER 1. INTRODUCTION

The goals of this graduation thesis can be summarised into the following points:

1. create a simulation of a LSP process in CAM software,

2. develop a post processor for the LSP process,

3. generate a program for the robotic arm controller from simulation,

4. test simulation of LSP process on physical robotic arm.

This graduation thesis is divided into the following chapters: Chapter 2 contains the

basics of industrial robotics. Chapter 3 acquaints the reader with the LSP process. It

describes the research topic, related work, and the experimental setup. Chapter 4 deals

with the CAM program used in this graduation thesis, RoboDK. The actual implementa-

tion of the post processor in the programming language Python is the focus of Chapter 5.

In Chapter 6, the post processor for the LSP process is tested on an actual industrial

robotic arm setup. Finally, the closing Chapter 7 contains the conclusions and future

work.

The HiLASE research centre is an infrastructure focused on laser research and develop-

ment, located in Dolńı Břežany, Czech Republic. HiLASE’s Industrial laser applications

program (ILA) focuses on LSP, laser induced damage threshold, and laser micromachin-

ing technologies. ILA is equipped with several experimental stations, including an LSP

station. The author of this graduation thesis is employed as a control system engineer in

the laser shock peening group of the ILA program. In addition, the author is responsible

for carrying out LSP experiments for industrial partners and universities. The author’s

other tasks include programming the LSP station’s robotic arm, integrating different laser

sources with the LSP station’s robotic arm and constructing and putting into operation

subsystems of the LSP station.

Chapter 2

Basics of industrial robotics

Excerpt from the play Rossum’s Universal Robots (R.U.R.).

In the introductory scene, Helena Glory is visiting Harry Domin, the

director general of Rossum’s Universal Robots, and his robotic secretary

Sulla.

Domin: Sulla, let Miss Glory have a look at you.

Helena (stands and offers her hand): Pleased to meet you. It must be

very hard for you out here, cut off from the rest of the world [the factory is

on an island].

Sulla: I do not know the rest of the world Miss Glory. Please sit down.

Helena (sits): Where are you from?

Sulla: From here, the factory.

Helena: Oh, you were born here.

Sulla: Yes I was made here.

Helena (startled): What?

Domin (laughing): Sulla isn’t a person, Miss Glory, she’s a robot.

Helena: Oh, please forgive me . . .

Karel Čapek

Rossum’s Universal Robots (R.U.R.)

This chapter gives a short introduction to the domain of industrial robotics. This

chapter deals with the classification of industrial robotic arms, industrial robotic arms

programming, and offline programming of robotic arms. A basic understanding of indus-

trial robotics is necessary to understand the implementation of the post processor.

3

4 CHAPTER 2. BASICS OF INDUSTRIAL ROBOTICS

2.1 Classification of handling devices

Figure 2.1 gives a basic idea of the different types of handling devices.

+DQGOLQJ�GHYLFHV

6LQJOH�SXUSRVH
PDQLSXODWRUV

0XOWLSXUSRVH
PDQLSXODWRUV

6\QFKURQRXV
PDQLSXODWRUV

3URJUDPPDEOH
PDQLSXODWRUV

�VW�*(1(5$7,21���0DQLSXODWRUV�ZLWK�VWDWLF�SURJUDP�

�QG�*(1(5$7,21���0DQLSXODWRUV�ZLWK�PRGLILDEOH�SURJUDP�

�UG�*(1(5$7,21���&RJQLWLYH�URERWV�

Figure 2.1: Classification of handling devices [7]

• single-purpose manipulators – They are characterised by limited movement possi-

bilities, level of control suitable for the application, design, and drives corresponding

to the equipment being operated and the technology being used,

• multipurpose manipulators – These manipulators are multipurpose with the pos-

sibility of adapting to different technologies. The choice between single-purpose

and multipurpose industrial robots and manipulators is based on the overall assess-

ment of the technology, workplace, etc., and must respect both the technical and

economic aspects,

2.2. INDUSTRIAL ROBOTIC ARMS 5

• synchronous manipulators – The control is performed continuously by a human.

These handling mechanisms are amplification devices for amplifying the force and

motion variables on based on stimuli triggered by a human. They are independent

of the machine being operated. The manipulator and the human form a closed

control loop. These devices transmit human commands remotely. This possibility

of remote control was used to a great extent for scientific, medical and military

purposes in the past. Even today, some operations are carried out indirectly using

miniature manipulators,

• programmable manipulators – They are controlled by a programming unit,

• programmable manipulators with fixed program – The program does not change

during the operation of the handling mechanism, it is fixed, the programming unit

is of simple design,

• programmable manipulators with modifiable programs – They have the possibility

of switching or selecting the program, usually according to the scene in which the

manipulators are currently in. These are usually devices with adaptive control.

They are currently at the cutting edge of design and are called industrial robotic

arms,

• cognitive robots – These robots equipped with the ability to perceive and think

rationally [7].

2.2 Industrial robotic arms

A robot is an automatically or computer-controlled integrated system capable of au-

tonomous goal-oriented interaction with the natural environment according to instruc-

tions from a human. This interaction consists of:

• in the perception and recognition of that environment,

• manipulating objects or moving around in this environment.

Industrial robotic arms are of more complex design than other handling devices and

differ from other handling mechanisms primarily in the level of control. Industrial robotic

arms are characterised by the following features:

6 CHAPTER 2. BASICS OF INDUSTRIAL ROBOTICS

• manipulation capability, i.e., grasping and moving objects,

• behavioural autonomy, i.e., a complex sequence of actions performed automatically

according to a specific program. Of particular importance is the case where this pro-

gram is not fixed (given by design, as in the case of classical automatic controllers)

but modifiable,

• controlled either by a human or automatically by its own controller. This makes it

different from, e.g., synchronous manipulators, which amplify and transmit motion

commands remotely directly from the human, who is an integral part of the system,

• versatility in the sense of ’multipurpose’, not ’omnipotence’. The devices do not

serve a single purpose but for several, sometimes quite diverse, purposes. This is

related to the possibility of changing the program,

• the existence of a link with the environment (perception). In addition to simple

mechanical (touch) electromagnetic sensors, more complex systems can also include

visual (using a television camera) and acoustic feedback,

• the spatial concentricity of the individual components (integration) is preferably

(but not necessarily, if one of the components is a computer) into a single object.

The consequence is, among other things, easy transportability. In some cases, the

system may be required to be mobile [7].

2.2.1 Classification of industrial robotic arms and their

structures

Industrial robotic arms can be classified according to various criteria: the number of

degrees of freedom, kinematic structure, drives used, workspace geometry, motion char-

acteristics, control method, or programming method. According to the above-mentioned

criteria, several types of robotic arms are distinguished:

Number of degrees of freedom

• universal robotic arms – six degrees of freedom,

• redundant robotic arms – more than six degrees of freedom,

• deficient robotic arms – less than six degrees of freedom.

2.3. INDUSTRIAL ROBOTIC ARMS PROGRAMMING 7

Kinematic structure

• serial robotic arms – open-loop kinematic chain,

• parallel robotic arms – closed-loop kinematic chain,

• hybrid robotic arms – combining both types of kinematic chains.

Type of drives

• electric,

• hydraulic,

• pneumatic.

Currently, industrial robotic arms with electric drives predominate in numbers. If

high loads are required, hydraulic drives are used and for high speeds pneumatic drives

are preferred.

Workspace geometry

• Cartesian – robotic arm equipped with three perpendicular linear axes,

• cylindrical – robotic arms equipped with two linear axes and one rotary axis,

• spherical – robotic arms equipped with two rotary axes and one linear axis,

• SCARA – Selective Compliant Articulated Robotic Arm, also equipped with with

two rotary axes and one linear axis but in a different configuration than a spherical

robotic arm [7].

2.3 Industrial robotic arms programming

Before we dive into the programming of industrial robotic arms, let us revise a few

concepts. A workcell represents a robotic arm and a collection of machines or peripherals.

A single robotic arm controller is responsible for controlling the various appliances of

a workcell. A robotic arm end effector is a peripheral placed at the end of the robotic

arm. The end effector represents the last link of the robotic arm. According to the

8 CHAPTER 2. BASICS OF INDUSTRIAL ROBOTICS

application, end effectors can be grippers, welding devices, spray guns, or grinding and

deburring machines [8].

The robotic arm controller is equipped with a so-called interface software. The in-

terface software makes it easier for the user to program the robotic arm. Two basic

information need to be programmed into the robotic arm:

• position data – i.e., where the robotic arm has to move to,

• procedure – i.e., what action the robotic arm will perform at the specific position.

A robotic arm position can be taught in several different ways:

• positional commands – the programmer inputs the position data using a graphical

user interface (GUI) or text-based commands,

• online programming, which is further divided into three types:

– pendant – the pendant is a handheld control and programming unit attached

to the robotic arm controller,

– lead-by-the-nose – the robotic arm is de-energized and moved along the re-

quired positions by hand while the robotic controller saves them into memory,

– direct control by CAM program – the robotic arm is moved along the required

positions from an external PC using a CAM program.

• offline programming – the robotic arm cell including the robotic arm and machines

are represented in a specialised software. The robotic arm can be moved in the

software and brand-specific applications for the robotic arm controller can be cre-

ated [9].

2.3.1 Offline programming

Robotic arms from different manufacturers have incompatible interfaces. Robotic arm

programming languages evolve slowly, and robotic arm manufacturers offer backwards

compatibility. For example, FANUC uses not one, but two programming languages for

their controllers:

• TP language – suitable for programming position data,

2.3. INDUSTRIAL ROBOTIC ARMS PROGRAMMING 9

• KAREL language – high-level language based on Pascal, suitable for programming

logical constructs [10].

Offline programming (OLP) refers to a programming method in which the robotic arm

is programmed outside the production environment. OLP helps to eliminate production

downtime and allows studying multiple scenarios of a robot cell before setting up the

production cell. OLP also aids in predicting mistakes made in designing a workcell. The

OLP workflow can be summarised into the following steps:

1. creating/importing a robotic arm cell that mimics the real life workcell,

2. importing a CAD file representing the machined part,

3. programming (graphical or textual) and automatic generation of robotic arm path,

4. simulation and validation – collision detection, joint violations etc.,

5. reporting – efficiency, productivity, cycle time etc.,

6. translating the robotic arm program for a specific controller using a post processor,

7. executing the robotic arm program in an actual workcell [11].

10 CHAPTER 2. BASICS OF INDUSTRIAL ROBOTICS

Chapter 3

Laser shock peening

Since the early Middle Ages, mankind has always struggled to increase the

hardness and flexibility of metals, to improve the durability and reliability

of metal tools and parts. From the Damascus steel smiths through the

swordsmiths of medieval Japan, the method of cold-working metal by the

application of precise mechanical pressure such as hammer blows has

a glorious history.

In modern times, this concept has reached its apex with industrial surface

hardening using shot peening, where thousands of small lead shots are fired

at the metal surface, compressing and hardening the surface , improving

the durability. With the advent of high power laser systems, an improved

process has been developed, the process of laser shock peening.

Samuel Zhrdne

HoloOr company

Laser shock peening (LSP) is a surface treatment process used to improve the me-

chanical and physico-chemical characteristics (fatigue life, corrosion resistance, etc.) of

metallic components. LSP induces residual stress beneath the treated surface of metallic

materials. This residual stress is generated by high magnitude shock waves. A high mag-

nitude of shock waves is achieved by the confined plasma generated at the metal surface

by means of a high-intensity laser beam with a pulse duration in the tens of nanosecond

range. Compared to traditional processes such as shot peening (SP), an LSP process can

11

12 CHAPTER 3. LASER SHOCK PEENING

induce compressive residual stresses up to 1 mm in depth, which is approximately four

times deeper than SP. LSP can be applied to various metallic components, such as:

• aluminium alloys,

• titanium alloys,

• cast irons,

• nickel-based superalloys.

Firstly, this chapter deals with the physical and mechanical mechanisms of laser shock

peening. Secondly, it focuses on the parameters of laser shock peening, namely:

• laser power density,

• pulse shape and duration,

• laser wavelength,

• laser spot size and geometry,

• thermal protective coating, and confining overlay,

• coverage ratio of impacts [12].

Lastly, this chapter describes the experimental equipment used for LSP at the HiLASE

centre.

3.1 Laser shock peening overview

3.1.1 Laser shock peening process

The configuration of an LSP process with a metallic component is shown in Figure 3.1.

An intense pulsed laser shock beam is focused onto a metal surface for a brief period of

time (10 ns to 100 ns). The heated zone is vaporised and transformed to plasma by

ionisation (the temperature of plasma is over 10 000 °C). The plasma is under high

pressure, which propagates through the material via shock waves. Two modes of LSP

exist:

3.1. LASER SHOCK PEENING OVERVIEW 13

• direct ablation mode,

• confined ablation mode.

The direct ablation mode refers to the interaction of plasma with metal without

coating and confinement [6]. Plasma pressure of tenths of a GPa is achieved using direct

ablation mode. Higher pressure of 1GPa to 5GPa can be obtained using the confined

mode. The confined ablation mode is known not only to increase the peak pressure of

plasma by a factor up to ten, but also increases the duration of plasma by a factor of

three in comparison with the direct ablation mode. In the confined mode, the metal

surface is usually coated with an opaque material such as black paint or aluminium foil

and confined by a material transparent to the laser radiation such as water or borosilicate

glass. A stronger pressure pulse results in a higher magnitude of compressive residual

stress at a deeper depth [13].

Figure 3.1: Schematic configuration of laser shock peening process [14]

3.1.2 Plasma, shock wave and residual stress generation

When the laser power density rises to several GWcm−2, the surface of the material (or

the absorbent coating – if used) is heated and vaporised and forms plasma with pressure

of several GPa on the material’s surface. The plasma absorbs the laser energy for the

duration of the laser pulse. The plasma expands rapidly and generates a pressure pulse on

the surface of the material. As a consequence, a high-amplitude shock wave propagates

through the material. When using the confined ablation mode with a transparent overlay,

14 CHAPTER 3. LASER SHOCK PEENING

the plasma is held between the material and the transparent overlay, increasing the

plasma’s magnitude and amplitude. According to the above-mentioned description of

the confined ablation mode, the LSP process can be regarded as a two-step method:

1. uniaxial compression of the irradiated area and dilation of the surface layer is caused

by the rapid plasma expansion,

2. the surrounding material reacts to this deformation and generates a compressive

stress field.

Before the reaction of the surrounding zones excluded from LSP, during the actual LSP

process, uniaxial compression is induced in the direction of the shock wave propagation

and a tensile state is induced in the plane parallel to the surface. After the reaction of

the surrounding zones, a compressive stress field is generated in the affected zone, and

a tensile stress field is created in the underlying layers of the material. The compressive

stress field causes deformation in the material. The deformation is plastic as long as the

peak dynamic stresses of the shock waves within the material are above the dynamic yield

strength of the material. The process of compressive residual stress generation is shown

in Figure 3.2 [15].

Figure 3.2: Residual stresses formation with LSP:(a) stretching of impact area during inter-

action, (b) recovery of material after laser pulse has elapsed [15]

The knowledge of the temporal and spatial profile of the confined plasma pressure

provides insight into the optimisation of the LSP process. One of the simplest models

for estimating plasma pressure was developed by Fabbro [15]. It is based on the physical

and mechanical behaviour of the laser-induced plasma and describes the LSP process in

three steps:

1. the laser pulse hits the material, and the confined plasma expansion causes shock

waves to spread through the material,

3.1. LASER SHOCK PEENING OVERVIEW 15

2. after the laser pulse has elapsed, the plasma cools down adiabatically, but the

pressure is still present over a period approximately twice as long as the laser pulse

duration,

3. the adiabatic cooling continues, but the pressure of the plasma is already too low

to drive shock waves deeper into the material.

Assuming the plasma to be a perfect gas, the peak plasma pressure for water-confined

ablation mode then holds:

P = 0.01

√
α

2α + 3
ZI0 (3.1)

where:

• P – peak plasma pressure [GPa],

• I0 – laser power density [GWcm−2],

• α – efficiency of the interaction [–],

• Z – reduced shock impedance between the material and the confining medium

[g cm−2 s−2]

Based on Equation 3.1, we can assert that in the water-confined ablation mode, the peak

pressure is directly proportional to the square root of the incident laser power density [15].

3.1.3 Transparent overlay and absorbent coating

In the confined mode, the material is covered with two layers. The material surface is

first coated with a nontransparent (absorption) overlay. The second layer is a transparent

(confinement) overlay placed on the absorption layer.

The transparent overlay aims to prevent the laser-induced plasma from expanding

freely from the metal surface. The transparent overlay traps the expanding plasma on

the metal surface. As a consequence, the plasma pressure rises higher than without

the transparent overlay applied. Without the transparent overlay, the plasma would

absorb the incident laser energy, but the laser energy would not be converted efficiently

into a pressure pulse that induces compressive residual stresses in the material. The

16 CHAPTER 3. LASER SHOCK PEENING

transparent overlay is placed on top of the absorbent coating. Any transparent material

such as water, glass, fused quartz, and acrylic can be used as a transparent overlay, but

a thin layer of water flowing over the coated surface is usually used because it is the

easiest to apply [16].

The metal surface is usually laminated with a nontransparent material such as black

paint, black vinyl tape, or aluminium foil. The nontransparent coating serves two pur-

poses:

• absorption coating – increasing the absorption of the incident laser energy and thus

increasing the shock wave intensity,

• thermal protective coating – protecting the material surface from laser ablation

and melting (the thermal effect is limited only to the protective coating) and thus

preventing tensile strain from developing on the material’s surface [17].

Figure 3.3: Laser shock peening strategy – one layer consisting of four sequences [14]

3.1.4 Laser shock peening overlapping strategy

Overlapping of successive LSP processes (i.e., individual laser impact areas) is used

to cover large areas with LSP. The coverage ratio is defined as the ratio between the

overlapping area and the impact spot size for two successive LSP processes. An increase

in the coverage ratio increases the plastically affected depth. Overlapping successive LSP

processes results in a comparatively uniform distribution of compressive residual stress

across the overlapping regions.

3.1. LASER SHOCK PEENING OVERVIEW 17

During the peening process, a pattern is created made of individual laser pulses.

Generally, multiple sequences of the pattern that are gradually shifted across the sample

are used to create a layer, as seen in Figure 3.3. The pattern shifting ensures a more

homogeneous residual stress distribution. The disadvantage of this strategy is that the

protective coating needs to be replaced in between sequences [18].

3.1.5 Laser system parameters affecting the LSP process

When performing a LSP process, the most challenging task is the choice of optimal

LSP parameters (laser power density, laser spot size, absorbent coating) for the given

material. If these parameters are chosen incorrectly, high tensile residual stresses can be

induced on the material’s surface, which can worsen the mechanical performance of the

component [19].

Laser system for laser shock peening overview

Choosing an appropriate laser system is the first step in fulfilling the LSP process

requirements. In LSP laser systems, the focus is mainly on the following parameters:

• pulse energy: 1 J to 100 J/pulse,

• pulse duration: 10 ns to 100 ns,

• laser wavelength: three wavelengths are used for the LSP process most commonly:

– 1064 ns (near-infrared),

– 532 ns (green),

– 355 ns (ultraviolet).

• sufficient repetition rate in the tens of hertz range.

The laser pulse energy influences the laser power density and therefore the magni-

tude of surface residual stress. The laser pulse duration and temporal shape affect the

breakdown threshold of the laser power density. A shorter laser pulse with a short rise

time usually results in a higher power density and higher peak pressure. The wavelength

of the laser system influences the interaction between the laser pulse, absorption and

confinement overlay and the material surface [15].

18 CHAPTER 3. LASER SHOCK PEENING

Laser spot size and geometry

One of the advantages of LSP is that the laser spot size and geometry can be adjusted

to suit different applications. Laser spot sizes used for LSP vary between hundreds of

micrometres and 6mm and usually have a round or square profile. The usable laser

spot sizes are restricted mainly by the incident laser power density. The main difference

between using a laser spot with a small diameter compared to a laser spot with a larger

diameter lies in the way the shock waves expand in the material:

• shock waves originating from a laser spot with a small diameter (r) expand like

a sphere and attenuate at a rate of 1/r2,

• shock waves originating from a laser spot with a larger diameter (r) expand like

a planar front and attenuate at a rate of 1/r.

Consequently, the planar shock wave propagates further into the material, and the resid-

ual stress reach deeper than the spherical shock wave [20].

The magnitude of residual stress usually reaches its maximum at the surface and

decreases with depth. This rule is valid for square laser spots. which minimalize the

instability of the residual stresses at the centre of the laser spot. On the other hand,

when using a circular laser spot, the residual stresses at the centre of the laser spot are

unstable due to the complicated interactions of shock waves in this region [21].

Laser power density and wavelength

The magnitude of the laser power density plays a pivotal role in determining the

magnitude of the plasma pressure. Moreover, the magnitude of the surface residual

stresses is directly proportional to the magnitude of the plasma pressure. It is tempting

to assume that by just increasing the laser power density, we will obtain higher surface

stresses and thus a better quality LSP process. In reality, we are limited by several effects

accompanying the laser-matter interaction:

• dielectric breakdown of air can occur if the magnitude of the laser power density is

too high. The dielectric breakdown is the generation of plasma not on the material

surface, but in the area in front of it. This plasma absorbs the incoming laser pulse

energy, thus limiting the energy to generate a shock wave in the material and affects

the LSP process negatively,

3.1. LASER SHOCK PEENING OVERVIEW 19

• when the magnitude of laser power density is higher than a certain threshold, the

residual stresses increase in depth but decrease at the surface because of surface

release waves,

• another consequence of increasing the laser power density above a certain threshold

is the saturation and scattering of the corresponding pressure. The saturation of

pressure is caused by the confining overlay breakdown phenomenon. The breakdown

of the confining overlay has two negative consequences:

– the pressure duration is shortened,

– the peak pressure is saturated.

As mentioned earlier, the three most commonly used wavelengths for LSP are near

infrared, green, and ultraviolet. The near infrared wavelength has the highest absorption

coefficient in the confining overlay and a high breakdown threshold. By contrast, the green

wavelength has the lowest absorption in the confining overlay and a lower breakdown

threshold. The pressures produced by the laser pulses have similar profiles regardless of

the wavelength [22].

Laser pulse temporal profile and duration

Laser systems with parameters suitable for LSP usually deliver two types of temporal

shapes:

• Gaussian,

• short rise time (SRT).

It was observed that SRT pulse shapes produce higher pressure on the metal surface

and have a higher breakdown threshold than Gaussian pulse shapes. The pressure pulse

duration is directly proportional to the laser pulse duration. This fact is advantageous

when it is possible to change the laser pulse duration of a laser system [23].

3.1.6 Laser shock peening applications

Nowadays, LSP is heavily commercialised, and hundreds of patents regarding LSP

have been issued. The industry leaders are General Electrics, LSP Technologies and

Curtis Wright Surface Technologies. LSP is used in the following applications:

20 CHAPTER 3. LASER SHOCK PEENING

• increase of fatigue life and fatigue strength of structures [24],

• strengthening of thin sections [25],

• shaping or straightening of parts (laser peen forming).

LSP is expected to expand from current high-value, low volume parts to more mass-

produced parts in the future, due to the steady advancements in laser systems suitable

for LSP [26].

3.2 Laser shock peening station and laser sources

The HiLASE research centre is an infrastructure focused on laser research and develop-

ment, located in Dolńı Břežany, Czech Republic. HiLASE’s Industrial laser applications

program (ILA) focuses on LSP, laser induced damage threshold (LIDT), and laser micro-

machining technologies. ILA is equipped with several experimental stations, including

an LSP station.

The LSP station uses two laser sources:

• Bivoj laser system,

• Litron LPY ST 7875-10 2HG laser.

A laser beam distribution system (LBDS) distributes the beam from the laser laboratory

located on the ground floor to the experimental laboratory located on the 1st floor. The

Bivoj laser system is a Diode Pumped Solid State Laser (DPSSL) based on Yb-doped

gain media with a laser wavelength of 1030 nm capable of delivering energy pulses up to

8 J at a 10Hz repetition rate. The beam shape at the output of the Bivoj laser is a square

flat-top pulse. An overview of the Bivoj laser system is shown in Figure 3.4. The two

main sections of the Bivoj laser are the front-end and the 10 J amplifier. The second laser

source available at the LSP station is the Litron LPY ST 7875-10 2HG laser.

3.2.1 LSP station layout

The layout of the LSP station is shown in Figure 3.5. The laser beam enters the LSP

station through the LBDS output node and continues to the optical table, where it is

3.2. LASER SHOCK PEENING STATION AND LASER SOURCES 21

redirected and focused on the target. The target itself is mounted on the robotic arm.

The laser beam position is fixed, so the robotic arm needs to be moved to direct the laser

to the sample.

Figure 3.4: Laser system Bivoj: Diode-pumped solid-state (DPSSL) laser [27]

(a) Schematic layout of LSP

station

(b) Photography of LSP station

Figure 3.5: (Description of images from left to right) (a) schematic layout of LSP station, (b)

photography of LSP station [14]

3.2.2 Bivoj laser system

Bivoj front-end

The front-end starts with a fibre-based section, consisting of a fibre oscillator, a fibre

amplifier, and a temporal pulse shaper with 125 ps resolution. The output of the fibre

front-end is fed to the first booster amplifier, which is regenerative and increases the

energy to 30mJ and reduces the repetition rate to 10Hz. The second booster amplifier

works in a multi-pass regime and increases the pulse energy to approximately 100mJ.

22 CHAPTER 3. LASER SHOCK PEENING

The repetition rate can be switched between 1Hz and 10Hz. The beam shape at the

front-end output is 8× 8 mm2 square flat-top.

Bivoj 10 J amplifier

The 10 J amplifier is the first-stage main amplifier based on cryogenically cooled mul-

tislab technology. The principal component of the amplifier is the amplifier head, where

the gain media are stored and cooled by gaseous helium to the temperature of about

150K. The laser beam from the front-end is enlarged to 22 × 22 mm2 and sent to the

10 J amplifier, where it increases its pulse energy from approximately 100mJ to approxi-

mately 8 J at 10Hz. The spatial profile of the laser beam at the output of the Bivoj 10 J

amplifier is shown in Figure 3.6 and the temporal profile is shown in Figure 3.7 [28].

Figure 3.6: Spatial profile of laser beam at output of Bivoj 10 J amplifier and approximate

dimensions [18]

Figure 3.7: Temporal profile of laser beam at output of Bivoj 10 J amplifier measured with

InGaAs photodetector [18]

3.2. LASER SHOCK PEENING STATION AND LASER SOURCES 23

3.2.3 Litron LPY ST 7875-10 2HG laser

The second laser source available at the LSP station is the Litron LPY ST 7875-

10 2HG laser, a tabletop laser located directly in the experimental laboratory next to

the LSP station. This laser is a pulsed Q-switched Nd:YAG laser suited for industrial

or research applications. The Litron LPY ST 7875-10 2HG laser comes with a super-

gaussian resonator. The most important parameters of this system are highlighted in

Table 3.1 and the laser system is shown in Figure 3.8 [29].

Table 3.1: Litron LPY ST 7875-10 2HG parameters [30]

Parameter Value

Repetition Rate [Hz] 10

Output Energy [mJ]

1064 nm 3500 a

532 nm 1750

Beam Diameter [mm] 15

Beam Divergence [mrad] <0.5 b

Pulse Width @1064 nm [ns] 10-12

Pointing Stability [µrad] 25 c

Timing jitter [ns] <0.5 d

a Peak-to-peak Energy – 99 % of pulses.
b Full angle for 90 % of the energy.
c Half angle.
d Jitter is measured concerning the exter-

nal Q-switch trigger input.

3.2.4 FANUC M-20iA/20M robotic arm

The FANUCM-20iA/20M is a 6-axis universal industrial robotic arm with a maximum

load capacity of 20 kg and a maximum reach of 1811mm. The repeatability of the robotic

arm is ±0.08mm. The FANUC M-20iA/20M is a multipurpose robotic arm and can be

used for various applications such as assembling, packaging and machining [31].

The robotic arm is coupled with a FANUC R-30iB controller. The R-30iB controller

is equipped with a FANUC AIF01A PLC interface module. The interface module is

24 CHAPTER 3. LASER SHOCK PEENING

Figure 3.8: Litron LPY ST 7875-10 2HG laser at HiLASE centre

connected to the following expansion modules:

• AID16L – 16 digital inputs,

• AOD16D – 16 digital outputs,

• ADA02A – 2 analog outputs [32].

The FANUC AIF01A PLC interface module and its expansion modules are connected

to the Bivoj and Litron lasers via digital inputs and outputs. In the case of the Bivoj laser

system, the expansion modules are linked to a fast flipper located in the Bivoj laboratory.

The fast flipper either redirects the laser beam into a cooled beam dump or lets it pass

through the LBDS into the LSP station. The Litron laser is coupled to the robotic arm

controller via an external trigger.

3.2.5 Electrical connection between FANUC R-30iB controller

and Litron LPY ST 7875-10 2HG laser

A block diagram of the electrical connection between FANUC R-30iB controller and

Litron LPY ST 7875-10 2HG laser is shown in Figure 3.9. The robotic arm PLC sends out

a ROBOT GATE digital output signal which acts as a gating signal for the EXTERNAL

TRIGGER INPUT signal. The EXTERNAL TRIGGER INPUT signal is generated by

the microcontroller unit (MCU). The LAMP SYNC OUTPUT signal is fed back to the

MCU and to the delay generator. The delay generator creates a delayed Q-SWITCH

TRIGGER signal which is inputed into the D/A input of the laser controller. The

Q-SWITCH TRIGGER signal is delayed with respect to the EXTERNAL TRIGGER

3.2. LASER SHOCK PEENING STATION AND LASER SOURCES 25

INPUT signal by tQSW . The value of tQSW is fine-tuned with the help of the delay

generator. The timing diagram for internal triggering of the flashlamps and external

triggering of the Q-switch is shown in Figure 3.10, where:

• tBT – intra-cavity build up time (typically 50 ns to 100 ns),

• tQSW – timed by external electronics with respect to the external lamp trigger input

(typically 100 µs to 500 µs for maximum output)

Figure 3.9: Block diagram of the electrical connection between FANUC R-30iB controller and

Litron LPY ST 7875-10 2HG laser

Figure 3.10: Timing diagram for external triggering of flashlamp and internal triggering of the

Q-switch, where tBT is the intra-cavity build up time (typically 50 ns to 100 ns)

and tQSW is the internally timed Q-switch delay (typically 100 µs to 500 µs for

maximum output)

The FANUCM-20iA/20M robot and FANUC R-30iB controller are shown in Figure 3.11 [33].

The electrical connection also allows to change the repetition rate of the laser (1 Hz or

10 Hz).

Network connection of robotic arm controller

The robotic arm controller must be reachable from the computer running the RoboDK

application described in Chapter 4. In the LSP station, this is ensured by having the

controllers and computer on the same local network as depicted in Figure 3.12.

26 CHAPTER 3. LASER SHOCK PEENING

3.2.6 LSP process example

The following experimental parameters describe the improvement of cavitation erosion

resistance by LSP carried out at the HiLASE centre. This process is developed by HiLASE

center and SIGMA GROUP Plc. for the improvement of cavitation erosion resistance of

pump blades. The parameters chosen for this experiment are shown in Table 3.2.

Table 3.2: Experimental parameters of laser shock peening for

improvement of cavitation erosion resistance

Parameter Value

Laser source Bivoj laser system

Wavelength [ns] 1030

Repetition rate [Hz] 10

Pulse energy at sample [mJ] 4500

Beam size at sample [mm2] 9

Pulse width @1030 nm [ns] 10

Power density at sample [GWcm−2] 5

(a) FANUC M-20iA/20M industrial robotic arm (b) FANUC R-30iB controller with teach pen-

dant

Figure 3.11: (Description of images from left to right) (a) FANUC M-20iA/20M industrial

robotic arm, (b) FANUC R-30iB controller with teach pendant [33]

3.2. LASER SHOCK PEENING STATION AND LASER SOURCES 27

+L/$6(�
LQWUDQHW

5���L%�URERW�FRQWUROOHU
,3�����������

0DVN�������������

6ZLWFK

&OLHQW�ZLWK�5RER'.
,3������������

0DVN�������������

,QWHUQHW

Figure 3.12: Network diagram of the robotic arm workcell

28 CHAPTER 3. LASER SHOCK PEENING

Chapter 4

RoboDK software

If you drive a car, it makes little difference what brand it is: all cars are

driven in essentially the same way. The same applies to computers. If you

have a Windows PC, the user interface won’t be affected by your computer

hardware. This is definitely not the case for industrial robots.

Albert Nubiola

CEO at RoboDK

This chapter gets the reader acquainted with the RoboDK software. Firstly, the

history and features of the RoboDK software are described. Secondly, the RoboDK

robotic arm library and RoboDK API are outlined. Finally, at the end of the chapter,

a short introduction to RoboDK post processors is given. It is followed by Chapter 5,

where the knowledge gained in this chapter is used practically.

4.1 RoboDK overview

RoboDK (short for Robot Development Kit) is a development platform for industrial

robotic arms offline and online programming and simulation. RoboDK (the company) was

founded by Albert Nubiola and Lauren Ierullo in January 2015 as a spin-off company from

the CoRo laboratory at ETS University in Montreal, Canada. RoboDK is a commercial

version of RoKiSim, a multiplatform educational software tool for 3D simulation of serial

6-axis robotic arms [34].

29

30 CHAPTER 4. ROBODK SOFTWARE

4.1.1 RoboDK features

The following list highlights some of the features RoboDK has to offer. These features

include:

• graphical user interface,

• drag-and-drop functionality,

• support for 3D file formats – importing objects and creating new tools using 3D

files such as STL, STEP and IGES,

• CAD-to-path features – generating robotic arm programs directly from curves

placed on station objects,

• external axes – integrating external axes to extend the robotic arm’s reachability,

• generating programs – generating programs for various robotic arm manufacturers,

• running programs on the fly – executing programs directly from an external com-

puter,

• real-time monitoring – viewing the robotic arm state on an external computer,

• computer aided manufacturing for robotic arms – converting 5-axis CNC toolpaths

to robotic arm programs and using a robotic arm like a 5-axis CNC,

• automated path solving – avoiding robotic arm errors, including singularities, joint

limits and collisions,

• fast collision detection – defining the object interactions,

• advanced use – creating robotic arm programs from an external computer using

a higher programming language. The RoboDK API is available in Python, C#,

Visual Basic, C++, and Matlab,

• simulating 2D vision cameras – testing image recognition algorithms in the simula-

tion environment,

• multiple robotic arms simulation – synchronising and programming multiple robotic

arms and moving them at the same time,

• customisable post processors – integrating specific sensors or actuators such as

grippers, force control, image processing, etc. [35].

4.2. ROBODK ROBOTIC ARM LIBRARY 31

4.2 RoboDK robotic arm library

RoboDK supports offline programming and has an extensive robotic arm library sup-

porting robotic arm controllers from various manufacturers, including, but not limited

to:

• ABB,

• FANUC,

• KUKA ,

• Motoman,

• Universal Robots,

• Kawasaki.

Models of industrial robotic arms in RoboDK have the same properties as if used with a

physical robotic arm controller. The RoboDK library can be accessed online either via

a browser or in the RoboDK application itself (keyboard shortcut Ctrl+Shift+O) [36].

4.3 RoboDK interface

The interface of RoboDK consists of the main menu, the toolbar, the station tree,

the status bar, the 3D view, and the robot panel. A picture of the RoboDK interface is

shown in Figure 4.1 [37].

4.3.1 RoboDK station

A RoboDK project containing a robotic arm, robotic arm tools, additional CAD files,

robotic arm frames, and a robotic arm program is called a station. A RoboDK station is

saved as one file (.rdk extension). The FANUC M-20iA/35M model from the RoboDK

robotic arm library is used in this thesis because it is readily available in the RoboDK

library and differs from the FANUC M-20iA/20M robotic arm used in the LSP station

at HiLASE centre only in payload capacity. Robotic arm files in RoboDK have a .robot

extension [38].

32 CHAPTER 4. ROBODK SOFTWARE

Figure 4.1: RoboDK version 5.2 running on Windows 10

4.4 RoboDK API

RoboDK provides a graphical user interface (GUI) to simulate and program industrial

robotic arms. No programming experience is required to simulate and program robotic

arms using the GUI. Unfortunately, the GUI has some limitations when used for simu-

lation and offline programming. If such a situation arises, then the RoboDK application

interface (API) can be used to extend the capabilities of RoboDK.

The API provides a set of routines and commands to RoboDK, enabling the user to

program the robotic arm using high-level programming languages. The RoboDK API

is implemented in Python, C#, C++, Visual Basic (.NET) and Matlab. Any of these

programming languages can be used to simulate and program any robotic arm. The API

can conveniently handle the following tasks:

• automating simulation,

• offline programming,

• online programming.

The RoboDK API for Python consists of the following modules:

• robolink module,

4.5. ROBODK ADD-INS 33

• item module,

• robodk module.

The RoboDK API is described in more detail in Chapter 5.

4.5 RoboDK Add-ins

4.5.1 RoboDK Add-in for SolidWorks

Solidworks is a professional 3D CAD modelling application. The RoboDK Add-in for

SolidWorks allows to combine SolidWorks’ 3D CAD modelling features with robotic arm

simulation and offline programming in RoboDK and considerably simplifies the program-

mer’s workflow. The programmer can load the 3D models created in SolidWorks directly

to RoboDK. Groups of curves or points can also be loaded to RoboDK, and robotic arm

programs can be generated from the curves or points subsequently.

SolidWorks RoboDK Add-in toolbar

The RoboDK Add-in for SolidWorks is accessible directly from the SolidWorks tool-

bar. The RoboDK Add-in toolbar is shown in Figure 4.2. The Add-in toolbar presents

the programmer with several functionalities:

Figure 4.2: SolidWorks RoboDK Add-in toolbar

• AutoSetup – the user selects the geometry (curves and points) and the model, the

curves are automatically transferred to RoboDK,

• LoadPart – only loads the 3D model from SolidWorks to RoboDK without import-

ing the curves or points,

• LoadPoints – loads points to RoboDK as a new object. Selected surfaces are used

to calculate the curve normals,

34 CHAPTER 4. ROBODK SOFTWARE

• LoadCurves – loads curves selected in RoboDK as a new object. Selected surfaces

are used to calculate curve normals,

• Settings – opens the default settings window [39].

SolidWorks RoboDK Add-in settings window

Figure 4.3 shows the SolidWorks RoboDK Add-in settings window. The settings

window contains two particular options the user should pay attention to. These options

are called minimum and maximum step size and are highlighted in Figure 4.3 in red.

By checking both checkboxes and entering the same value in both fields, it is ensured

that the path points will be generated along the curve at equidistant distances. This is

of particular importance if the user carries out the LSP process point-by-point (i.e., the

robotic arm reaches the point, then stops, the laser fires one pulse, and the robotic arm

continues to the next point).

Figure 4.3: SolidWorks RoboDK Add-in settings window

4.6. ROBODK COLLISION DETECTION 35

4.6 RoboDK collision detection

RoboDK is equipped with a tool that checks for collisions in the simulated workcell.

Unfortunately, RoboDK can not foresee collisions and can not stop a running simulation

before a collision occurs. RoboDK can only detect collisions. A successful collision-

free simulation is the first step in running a program. If the simulation is collision-free,

the next step is to test the robotic arm program on the physical robotic arm. The

simulated workcell should represent the physical workcell as accurate as required by the

given application.

The collision detection is activated by selecting Tools → Check collisions. The

setup of the collision detection is done via the collision map. An example of a collision map

is shown in Figure 4.4. The collision map is a Boolean matrix representing the collision

check state between all the moving objects in the workcell. The rows and columns of the

matrix are named after the moving objects in the workcell. The entries in the matrix

display the collision check state of a pair of moving objects in the workcell – the user can

activate or deactivate this collision check state [40].

Figure 4.4: Example of a collision map

4.7 RoboDK post processors

Post processors generate robotic arm programs for robotic arm controllers from robotic

arm simulations. Post processors are essential for offline programming of robotic arms.

A post processor defines the vendor-specific rules a robotic arm program must follow.

A robotic arm must be linked to a post processor in RoboDK to be able to generate

36 CHAPTER 4. ROBODK SOFTWARE

a robotic arm controller program. A post processor in RoboDK is a Python script (.py

extension). All the RoboDK post processors are located in the C:/RoboDK/Posts/ folder

(in case of the Windows operating system). To use a post processor it must be placed in

the C:/RoboDK/Posts/ folder. The user can modify an existing post processor or create

a new one from scratch. The modification of post processors is described in Chapter 5 in

more detail [41].

Chapter 5

Post processor implementation

Python is the most powerful language you can still read.

Paul Dubois

Lead developer for Numerical Python and Pyfort

This chapter familiarises the reader with the creation of a curve follow project in

RoboDK. Firstly, it focuses on the specifics of programming FANUC robotic arms. Sec-

ondly, it gives a short introduction to setting up a curve follow project in RoboDK.

Subsequently, it describes the RoboDK API, and in the end, it deals with the problem-

atics of post processors and the modification of post processors.

5.1 FANUC robotic arms programming specifics

5.1.1 FANUC Roboguide

FANUC Roboguide is a proprietary robotic arm simulation and offline programming

tool developed by the FANUC corporation. FANUC Roboguide is in many ways similar

to RoboDK. Like RoboDK, it supports the creation of robotic arm stations, importing of

CAD files and CAD-to-path features. The main difference is that Roboguide is limited

to FANUC robotic arms and FANUC related technologies and procedures. In contrast,

RoboDK is not limited to one robotic arm manufacturer and is universal and expandable.

FANUC Roboguide is used in this thesis to compile the created robotic arm controller

programs and upload them to the robotic arm controller. FANUC Roboguide offers

37

38 CHAPTER 5. POST PROCESSOR IMPLEMENTATION

several simulation software options tailored for specific robotic arm applications:

• FANUC Roboguide HandlingPRO – simulating material handling applications in-

cluding loading/unloading, packaging, assembly and material removal,

• FANUC Roboguide PaintPRO – simulating painting applications,

• FANUC Roboguide WeldPRO – simulating robotic arc welding processes,

• FANUC Roboguide PalletPRO and PalletTool – simulating palletizing applications.

An example of a FANUC Roboguide station is shown in Figure 5.1. The version of

FANUC Roboguide used in this study is 8.30104.00.35 (Rev. K) [42].

Figure 5.1: FANUC Roboguide workcell – user interface example

5.1.2 FANUC robotic arm controller programming languages

The FANUC company implements two programming languages for programming their

robotic arm controllers: teach pendant (TP) or KAREL. The TP language is mainly used

for motion control of the robotic arm and the programs are usually edited via the pen-

dant. TP programs are either binary files (.tp file extension) or can be human-readable

ASCII files (.ls file extension). The syntax of the TP language is described in great detail

5.1. FANUC ROBOTIC ARMS PROGRAMMING SPECIFICS 39

in the SYSTEM R-30iB and R-30iB MATE HandlingTool Setup and Operations Man-

ual [10]. The KAREL language is a high-level language and does not support robotic arm

movement instructions. KAREL is mainly used to implement program logic. KAREL

programs can not be edited using a pendant. The syntax of the KAREL language is

covered in the FANUC Robotics SYSTEM R-30iA Controller KAREL Reference Man-

ual [43].

5.1.3 Teach pendant program structure

A program element is a segment of a program. A TP program is a collection of program

elements with the purpose of executing an application. Figure 5.2 shows an example of

a TP program with some typical program elements. A TP program is typically composed

of the following program elements:

• program header information – includes information such as program name, com-

ment, group mask, program type, application mask, write protection setting, and

cycle time,

• UTOOL and FRAME number entries – specify the frame and tool used,

• line numbers – assigned to each program instruction,

• motion instructions – include commands that tell the robotic arm where and how

to move,

• program instructions for logic, I/O, data handling, program control, advanced func-

tions,

• remarks – annotate the program,

• program end marker – indicates that there are no more instructions in the program.

A motion instruction is the most important type of program element. A motion

instruction directs the robotic arm to move in a specified way to a specific location in

the workcell using a specified speed. Figure 5.3 shows a typical example of a motion

instruction. A motion instruction consists of:

• motion type – how the robotic arm moves to the position,

40 CHAPTER 5. POST PROCESSOR IMPLEMENTATION

Figure 5.2: Example of a TP program with some typical program elements [10]

• position indicator symbol – indicates that the robotic arm is at the taught position,

• positional information – where the robotic arm moves,

• termination type – how the robotic arm ends the move to the position,

• speed – how fast the robotic arm moves to a position,

• motion options – additional commands that perform specific tasks during robotic

arm motion.

5.1.4 Compiling a FANUC teach pendant program

Only a TP program in binary format can be run on FANUC robotic arm controllers.

Because RoboDK creates TP programs as human-readable ASCII files, the TP programs

need to be converted to binary format before uploading them to the robotic arm controller.

Two options to convert .ls programs to .tp programs exist:

1. the ASCII Upload option must be loaded on the robotic arm controller. After

uploading an .ls file to the controller, it is automatically converted to a .tp file,

2. the program is compiled and uploaded either using the WinOLPC tools via Robogu-

ide or using the WinOLPC tools directly [10]. The WinOLPC tools are located in

C:/Program File(x86)/FANUC/WinOLPC/bin in the Windows operating system.

5.2. ROBOT MACHINING PROJECTS IN ROBODK 41

Figure 5.3: Example of motion instruction [10]

5.2 Robot machining projects in RoboDK

The applications of robotic arm machining in industry are numerous. Some applica-

tions include:

• milling,

• drilling,

• chamfering,

• deburring.

RoboDK supports three types of robot machining projects:

• robot machining projects – a robotic arm path is created from an Numerical Control

(NC) file,

• curve follow projects – a robotic arm follows a curve path in 3D space,

• point follow projects – a robotic arm follows a path defined by points in 3D space.

The process of setting up a curve follow project in RoboDK is described in the following

sections. In laser shock peening, the laser (representing the tool) is static, and the robotic

arm holds the object. Therefore, a curve follow project with a constant tool orientation

is set up in RoboDK [44].

42 CHAPTER 5. POST PROCESSOR IMPLEMENTATION

5.2.1 Setting up a curve follow project in RoboDK

A curve follow project in RoboDK must at least consist of one robotic arm, one tool,

and one reference frame. The situation described is a so-called remote TCP situation,

i.e., the Tool Center Point (TCP) is fixed in the station, and the robotic arm holds the

object. The TCP in our project is represented by the laser beam. The user has to execute

the following steps to set up a basic curve follow project and to generate a vendor-specific

robotic arm program:

1. create and import the robotic arm path to RoboDK using preferred CAD software,

2. mount the robotic arm path as a tool in RoboDK,

3. create reference frame (optionally import CAD of manufactured part) in RoboDK

station,

4. create curve follow project: Utilities → Curve follow project,

5. open the curve follow project settings. A window similar to the one displayed in

Figure 5.4 will open,

6. modify curve follow project settings:

• Robot – the robotic arm holding the object,

• Reference – the frame representing the remote TCP,

• Tool – the robotic arm path.

7. change Select algorithm option to: Robot holds object & follows path,

8. select Update project. RoboDK automatically generates a preprocessed robotic

arm program for the actual station,

9. right-click the preprocessed program, select post processor and generate program.

The .ls program for the actual station will be opened in the default RoboDK text

editor,

10. congratulations. The curve follow project is now set up,

11. compile the program and export the program to the FANUC robotic arm controller

using FANUC Roboguide or WinOLPC tools [45].

5.3. ROBODK API 43

Figure 5.4: Curve follow project settings in RoboDK

5.3 RoboDK API

An application interface (API) is a set of features an application provides to the user

via a high-level programming language. The RoboDK API dramatically expands the

potential of RoboDK. The RoboDK API is implemented in Python, C#, C++, Visual

Basic (.NET) and Matlab. The Python API is the most extensive and is used in this

thesis. The RoboDK API facilitates the execution of the following tasks:

• automating simulations – macro scripts for repetitive tasks such as tool changing,

pick and place applications.

• offline programming – using the RoboDK API methods to create programs for

specific robotic arm controllers. The pre-processed .pyc file created in RoboDK’s

GUI is executed directly by the post processor. The post processor defines the rules

for vendor–specific robotic arm controller program generation.

• online programming – using RoboDK API to move robotic arms and retrieve their

current position in real time. RoboDK connects to the robotic arm controller using

44 CHAPTER 5. POST PROCESSOR IMPLEMENTATION

robotic arm drivers.

The elegance of this approach is that the same program written in a high-level program-

ming language can be used for all three of the above-mentioned tasks [46].

5.3.1 Python API for RoboDK

Python is an interpreted high-level programming language. The Python API for

RoboDK uses Python 3, although most features are compatible with Python 2 also. The

RoboDK API for Python consists of the following modules:

• robolink module – this module represents the link between RoboDK and the high–

level programming language,

• item module – any item from the RoboDK item tree can be retrieved. An item can

be a robotic arm, a reference frame, a tool, an object, or a specific project,

• robodk module – a module with a robotics toolbox for pose operations. All post

processors depend on the robodk module .

The modules are located in the folder C:/RoboDK/Python/ in the Windows operating

system. This folder is included in the PYTHONPATH system variable. The Python API is

accompanied with examples. These examples are located in the folders

C:/RoboDK/Library/Scripts and C:/RoboDK/Library/Macros in the Windows operat-

ing system [47].

5.4 RoboDK post processors

A post processor specifies how robotic arm programs must be generated for a specific

robot controller and are used when robotic arm programs are generated offline. Post pro-

cessors serve as tools to convert the simulation to vendor-specific robotic arm programs.

All RoboDK post processors are placed in the C:/RoboDK/Posts folder in the Windows

operating system. All post processors rely on the robodk module. The robodk module

is a robotics toolbox for Python, based on Peter Corke’s Robotics Toolbox [47].

5.4. ROBODK POST PROCESSORS 45

5.4.1 RoboDK post processor workflow

The creation of a program that is compatible with a FANUC robotic arm controller

consists of three steps. These steps are shown in Figure 5.5:

1. create a program in a curve follow project in RoboDK,

2. generate a preprocessed/universal .pyc file using RoboDK,

3. generate a vendor-specific robotic arm .ls program using the post processor.

Figure 5.5: RoboDK post processor workflow

5.4.2 RoboDK preprocessed file

After creating a program in the curve follow project, but before generating it using

a post processor, the program is saved as a preprocessed/universal Python program and

saved in a local temporary folder. The post processor defines a RobotPost class that

generates the desired code. In the Windows operating system, the preprocessed Python

files are saved in the user’s temporary folder (e.g.: C:/Users/username/AppData/Temp).

These programs can also be used for debugging new post processors. A code snippet of

a preprocessed file is shown in Listing 5.1 [48]. The three dots (...) denote parts of the

code that have been intentionally omitted to keep the source code listing shorter.

import sys

import os

sys.path.append(os.path.abspath(r"""C:/RoboDK/Posts/""")) # temporarily add path to

↪→ POSTS folder

from FANUC_R30iA_decompyle3 import *

def p(x,y,z,r,p,w):

a~= r*math.pi/180.0

46 CHAPTER 5. POST PROCESSOR IMPLEMENTATION

b = p*math.pi/180.0

c = w*math.pi/180.0

ca = math.cos(a)

sa = math.sin(a)

cb = math.cos(b)

sb = math.sin(b)

cc = math.cos(c)

sc = math.sin(c)

return Mat([[cb*ca,ca*sc*sb--cc*sa,sc*sa+cc*ca*sb,x],

↪→ [cb*sa,cc*ca+sc*sb*sa,cc*sb*sa--ca*sc,y], [--sb,cb*sc,cc*cb,z],

↪→ [0.0,0.0,0.0,1.0]])

print(’Total instructions: 140’)

r = RobotPost(r"""FANUC_R30iA_decompyle3""",r"""Fanuc M--20iA/35M""",6,

↪→ axes_type=[’R’,’R’,’R’,’R’,’R’,’R’], ip_com=r"""127.0.0.1""", api_port=20500,

↪→ prog_ptr=2172227036784, robot_ptr=2172252511552)

r.ProgStart(r"""Settings""")

r.RunMessage(r"""Program generated by RoboDK v5.2.2 for Fanuc M--20iA/35M on

↪→ 02/07/2021 17:12:29""",True)

r.RunMessage(r"""Using nominal kinematics.""",True)

r.setZoneData(1.000)

r.setSpeed(1000.000)

r.setFrame(p(1000.3,--445,552.3,0,10.19,--90),--1,r"""LASER_RTCP""")

r.setTool(p(0,0,0,0,0,0),--1,r"""ZAPUSTKA_PATH""")

r.RunMessage(r"""Show ZAPUSTKA_PATH""",True)

r.MoveJ(None,[--9.2878,0.949114,--28.3094,94.4347,--81.8311,87.4811],None)

r.MoveL(p(--14.8303,41.4662,85,105.917,0,180),

↪→ [--14.8823,2.45519,--28.2667,97.1731,--76.9261,87.0176], [0,0,0])

r.setSpeed(10.000)

r.MoveL(p(0.866853,42.1343,85,94.455,0,180),

↪→ [--14.6627,3.59506,--28.447,97.1044,--77.1403,75.3963], [0,0,0])

...

...

...

r.setSpeed(1000.000)

r.MoveL(p(--16.1785,41.074,185,107.509,0,180),

↪→ [--9.29955,0.844572,--28.2678,94.4344,--81.8176,449.114], [0,0,0])

r.ProgFinish(r"""Settings""")

5.4. ROBODK POST PROCESSORS 47

r.ProgSave(r"""C:/Users/marek.boehm/Documents/RoboDK/""", r"""Settings""", False,

↪→ r"""C:/RoboDK/Other/VSCodium/VSCodium.exe""")

Listing 5.1: Code snippet of preprocessed program to be executed by post processor

Let us dive into the source code of this preprocessed file and explain the functionality

of some of its methods. The most important method is the MoveL function:

MoveL(pose, joints, conf_RLF=None)

The MoveL method generates manufacturer-specific code for linear movement. The pa-

rameters of the MoveL method are:

• pose (robodk.Mat()) – pose target of the tool with respect to the reference frame,

pose can be None if the target is defined as a joint target,

• joints (float list) – robotic arm joints as a list,

• conf_RLF (int list) – pass additional arguments to function.

ProgStart(progname)

The ProgStart method is called when a new program is generated. The parameters of

the ProgStart method are:

• progname (str) – program name.

setSpeed(speed_mms)

The setSpeed method sets the linear robotic arm speed (in mm s−1).The parameters of

the setSpeed method are:

• speed_mms – speed in mm s−1.

ProgSave(folder, progname, ask_user=False, show_result=False)

The ProgSave method saves the program in a format compatible with the corresponding

robotic arm controller type. The parameters of the ProgSave method are:

• folder (str) – folder hint to save the program,

• progname (str) – program name as a hint to save the program,

48 CHAPTER 5. POST PROCESSOR IMPLEMENTATION

• ask_user (bool, str) – true if the default settings in RoboDK are set to promt

the user to select the folder,

• show_result (bool, str) – false if the default settings in RoboDK are set to not

show the program once it has been saved. Otherwise, a string is provided with the

path of the preferred text editor.

ProgFinish(progname)

The ProgFinish method is triggered after all the instructions of the program and defines

the end of the program. The parameters of the ProgFinish method are:

• progname (str) – program name.

Every post processor should implement a set of basic methods to generate programs for

robotic arm controllers correctly [49].

5.4.3 Selecting a post processor

Each robotic arm has a post processor assigned to it by default. The following steps

have to be taken to change the post processor of a robotic arm:

1. opening the robot panel,

2. selecting Parameters,

3. selecting post processor from drop-down list [50].

5.4.4 Post processor example and post processor example

output

An example of an output of the unmodified R-30iA post processor output is shown

in Listing 5.2.

/PROG Diecast15

/ATTR

OWNER = MNEDITOR;

COMMENT = "RoboDK sequence";

PROG_SIZE = 0;

5.4. ROBODK POST PROCESSORS 49

CREATE = DATE 31-12-14 TIME 12:00:00;

MODIFIED = DATE 31-12-14 TIME 12:00:00;

FILE_NAME = Diecast15;

VERSION = 0;

LINE_COUNT = 462;

MEMORY_SIZE = 0;

PROTECT = READ_WRITE;

TCD: STACK_SIZE = 0,

TASK_PRIORITY = 50,

TIME_SLICE = 0,

BUSY_LAMP_OFF = 0,

ABORT_REQUEST = 0,

PAUSE_REQUEST = 0;

DEFAULT_GROUP = 1,*,*,*,*,*,*;

CONTROL_CODE = 00000000 00000000;

/MN

1: ! Program generated by ;

2: ! RoboDK v5.2.2 for F ;

3: ! anuc M-20iA/35M on 0 ;

4: ! 9/08/2021 16:07:49 ;

5: ! Using nominal kinema ;

6: ! tics. ;

7: PR[9,1]=1000.300 ;

8: PR[9,2]=-445.000 ;

9: PR[9,3]=552.300 ;

10: PR[9,4]=-90.000 ;

11: PR[9,5]=10.190 ;

12: PR[9,6]=0.000 ;

13: UFRAME[9]=PR[9] ;

14: UFRAME_NUM=9 ;

15: PR[9,1]=0.000 ;

16: PR[9,2]=0.000 ;

17: PR[9,3]=0.000 ;

18: PR[9,4]=0.000 ;

19: PR[9,5]=0.000 ;

20: PR[9,6]=0.000 ;

21: UTOOL[9]=PR[9] ;

22: UTOOL_NUM=9 ;

23: ! Show Diecast15 ;

24:J P[1] 1% CNT0 ;

25:L P[2] 50mm/sec CNT0 ;

50 CHAPTER 5. POST PROCESSOR IMPLEMENTATION

26:L P[3] 10mm/sec CNT0 ;

27:L P[4] 10mm/sec CNT0 ;

...

...

...

461:L P[438] 10mm/sec CNT0 ;

462:L P[439] 50mm/sec CNT0 ;

/POS

P[1]{

GP1:

UF : 9, UT : 9,

J1= -11.825 deg, J2= 0.745 deg, J3= -13.905 deg,

J4= 69.881 deg, J5= -63.946 deg, J6= 28.200 deg

};

P[2]{

GP1:

UF : 9, UT : 9, CONFIG : ’N U T, 0, 0, 0’,

X = 1.632 mm, Y = -67.788 mm, Z = 73.203 mm,

W = -165.352 deg, P = -21.879 deg, R = 21.809 deg

};

P[3]{

GP1:

UF : 9, UT : 9, CONFIG : ’N U T, 0, 0, 0’,

X = 2.074 mm, Y = -68.202 mm, Z = 73.760 mm,

W = -165.468 deg, P = -21.989 deg, R = 21.644 deg

};

P[4]{

GP1:

UF : 9, UT : 9, CONFIG : ’N U T, 0, 0, 0’,

X = 2.535 mm, Y = -68.640 mm, Z = 74.302 mm,

W = -165.566 deg, P = -22.104 deg, R = 21.494 deg

};

...

...

...

P[439]{

GP1:

UF : 9, UT : 9, CONFIG : ’N U T, 0, 0, -1’,

5.5. FANUC R-30IA ROBODK POST PROCESSOR 51

X = -1.638 mm, Y = -138.500 mm, Z = 143.912 mm,

W = -165.328 deg, P = 21.824 deg, R = -21.741 deg

};

/END

Listing 5.2: Code snippet of unmodified R-30iA post processor output

5.5 FANUC R-30iA RoboDK post processor

The FANUC R-30iA post processor is located in the C:/RoboDK/Posts/vXX folder.

XX is a two-digit number and denotes the post processor version. The FANUC R-30iA

post processor comes in the form of a .pyc file (compiled bytecode) and needs to be

decompiled to a .py file with the help of a decompiler. The decompiler used in this study

is decompyle3 [51]. The FANUC R-30iA post processor is compatible with FANUC R-

30iB robotic arm controllers.

5.5.1 Modifying the FANUC R-30iA post processor methods

The user can create a new post processor from scratch or modify an existing post

processor. A post processor for a specific robotic arm controller is a single .py file.

All post processors are placed in the C:/RoboDK/Posts folder. A new post processor is

added to RoboDK by creating a .py file or renaming an existing .py file in this folder.

By deleting a .py file in this folder, the post processor is deleted from the list of post

processors.

The experimental setup of the LSP station at the HiLASE centre links the robotic

arm controller to the laser sources. The objective of the post processor modification for

the Litron LPY ST 7875-10 2HG laser can be expressed as:

“The laser source is operating at a 1 Hz repetition rate. The post processor for the

R-30iA controller will be modified in such a way that when the robotic arm with the

sample is in a position, where the LSP process (individual laser impact area) should be

placed, the robotic arm controller sends a command to the laser source to fire exactly one

laser pulse onto the desired area and then move on to the next position. This is accom-

plished by controlling the digital inputs (DIs) and digital outputs (DOs) of the robotic arm

controller.”

52 CHAPTER 5. POST PROCESSOR IMPLEMENTATION

The modification involves the MoveL method. The unmodified MoveL method gener-

ates the following code:

n: L P[1] 4mm/sec CNT100;

where:

• n – number of program line,

• L – linear movement,

• P[1] – designation of point,

• 4mm/sec – movement speed,

• CNT100 – zone data.

The modified MoveL method should output the following robotic arm controller code to

meet the requirements of the laser shock peening process:

n: WAIT DI[1:SYNCHRONIZATION_IN]=OFF;

n+1: WAIT DI[1:SYNCHRONIZATION_IN]=ON;

n+2: L P[1] 4mm/sec CNT100 TB 0.00sec,DO[5]=PULSE,1.0sec;

n+3: WAIT DO[5:LASER ON] = OFF;

n+4: WAIT 1.00(sec);

where:

• n – number of program line,

• WAIT CONDITION – wait condition, block code execution until condition is True,

• WAIT DI[1:SYNCHRONIZATION_IN]=OFF; WAIT DI[1:SYNCHRONIZATION_IN]=ON; –

detect rising edge of incoming synchronisation signal,

• TB 0.00sec,DO[5]=PULSE,1.0sec – execute command at a certain time before

reaching the point,

• P[1] – designation of point,

• DO[5]=PULSE,1.0sec – rectangular pulse at digital output, pulse duration is one

second, this command fires the laser,

• WAIT 1.00(sec) – block code execution for a certain amount of time.

5.5. FANUC R-30IA ROBODK POST PROCESSOR 53

Listing 5.3 contains the original MoveL method of the FANUC R-30iA post processor and

Listing 5.4 contains the modified MoveL method [49].

def MoveL(self, pose, joints, conf_RLF=None):

"""Add a~linear movement"""

if self.LAST_POSE is not None:

if pose is not None:

if distance(pose.Pos(), self.LAST_POSE.Pos()) < 0.001:

if pose_angle_between(pose, self.LAST_POSE) < 0.001:

return

self.page_size_control()

if pose is None:

target_id = self.add_target_joints(pose, joints)

move_ins = ’P[%i] %s %s ;’ % (target_id, self.SPEED, self.CNT_VALUE)

else:

target_id = self.add_target_cartesian(pose, joints, conf_RLF)

move_ins = ’P[%i] %s %s ;’ % (target_id, self.SPEED, self.CNT_VALUE)

self.addline(move_ins, ’L’)

self.LAST_POSE = pose

Listing 5.3: Code snippet of original MoveL method

def MoveL(self, pose, joints, conf_RLF=None):

"""Add a~linear movement"""

if self.LAST_POSE is not None:

if pose is not None:

if distance(pose.Pos(), self.LAST_POSE.Pos()) < 0.001:

if pose_angle_between(pose, self.LAST_POSE) < 0.001:

return

self.page_size_control()

if pose is None:

target_id = self.add_target_joints(pose, joints)

syncro_off = ’WAIT DI[1:SYNCHRONIZATION_IN]=OFF;’

syncro_on = ’WAIT DI[1:SYNCHRONIZATION_IN]=ON;’

move_ins = ’P[%i] %s %s TB 0.00sec,DO[5]=PULSE,1.0sec;’ % (target_id,

↪→ self.SPEED, self.CNT_VALUE)

wait_off = ’WAIT DO[5:LASER ON] = OFF;’

wait_on = ’WAIT 1.00(sec);’

else:

54 CHAPTER 5. POST PROCESSOR IMPLEMENTATION

target_id = self.add_target_cartesian(pose, joints, conf_RLF)

syncro_off = ’WAIT DI[1:SYNCHRONIZATION_IN]=OFF;’

syncro_on = ’WAIT DI[1:SYNCHRONIZATION_IN]=ON;’

move_ins = ’P[%i] %s %s TB 0.00sec,DO[5]=PULSE,1.0sec;’ % (target_id,

↪→ self.SPEED, self.CNT_VALUE)

wait_off = ’WAIT DO[5:LASER ON] = OFF;’

wait_on = ’WAIT 1.00(sec);’

self.addline(syncro_off, ’ ’)

self.addline(syncro_on, ’ ’)

self.addline(move_ins, ’L’)

self.addline(wait_off, ’ ’)

self.addline(wait_on, ’ ’)

self.LAST_POSE = pose

Listing 5.4: Code snippet of modified MoveL method

5.5.2 Example output of the modified FANUC R-30iA post

processor

An example of an output of the modified R-30iA post processor is shown in Listing

5.5.

/PROG Diecast15

/ATTR

OWNER = MNEDITOR;

COMMENT = "RoboDK sequence";

PROG_SIZE = 0;

CREATE = DATE 31-12-14 TIME 12:00:00;

MODIFIED = DATE 31-12-14 TIME 12:00:00;

FILE_NAME = Diecast15;

VERSION = 0;

LINE_COUNT = 2214;

MEMORY_SIZE = 0;

PROTECT = READ_WRITE;

TCD: STACK_SIZE = 0,

TASK_PRIORITY = 50,

TIME_SLICE = 0,

BUSY_LAMP_OFF = 0,

ABORT_REQUEST = 0,

PAUSE_REQUEST = 0;

5.5. FANUC R-30IA ROBODK POST PROCESSOR 55

DEFAULT_GROUP = 1,*,*,*,*,*,*;

CONTROL_CODE = 00000000 00000000;

/MN

1: ! Program generated by ;

2: ! RoboDK v5.2.2 for F ;

3: ! anuc M-20iA/35M on 1 ;

4: ! 8/09/2021 16:36:30 ;

5: ! Using nominal kinema ;

6: ! tics. ;

7: PR[9,1]=1000.300 ;

8: PR[9,2]=-445.000 ;

9: PR[9,3]=552.300 ;

10: PR[9,4]=-90.000 ;

11: PR[9,5]=10.190 ;

12: PR[9,6]=0.000 ;

13: UFRAME[9]=PR[9] ;

14: UFRAME_NUM=9 ;

15: PR[9,1]=0.000 ;

16: PR[9,2]=0.000 ;

17: PR[9,3]=0.000 ;

18: PR[9,4]=0.000 ;

19: PR[9,5]=0.000 ;

20: PR[9,6]=0.000 ;

21: UTOOL[9]=PR[9] ;

22: UTOOL_NUM=9 ;

23: ! Show Diecast15 ;

24:J P[1] 1% CNT0 ;

25: WAIT DI[1:SYNCHRONIZATION_IN]=OFF;

26: WAIT DI[1:SYNCHRONIZATION_IN]=ON;

27:L P[2] 50mm/sec CNT0 TB 0.00sec,DO[5]=PULSE,1.0sec;

28: WAIT DO[5:LASER ON] = OFF;

29: WAIT 1.00(sec);

30: WAIT DI[1:SYNCHRONIZATION_IN]=OFF;

31: WAIT DI[1:SYNCHRONIZATION_IN]=ON;

32:L P[3] 10mm/sec CNT0 TB 0.00sec,DO[5]=PULSE,1.0sec;

33: WAIT DO[5:LASER ON] = OFF;

34: WAIT 1.00(sec);

...

...

...

56 CHAPTER 5. POST PROCESSOR IMPLEMENTATION

2210: WAIT DI[1:SYNCHRONIZATION_IN]=OFF;

2211: WAIT DI[1:SYNCHRONIZATION_IN]=ON;

2212:L P[439] 50mm/sec CNT0 TB 0.00sec,DO[5]=PULSE,1.0sec;

2213: WAIT DO[5:LASER ON] = OFF;

2214: WAIT 1.00(sec);

/POS

P[1]{

GP1:

UF : 9, UT : 9,

J1= -11.825 deg, J2= 0.745 deg, J3= -13.905 deg,

J4= 69.881 deg, J5= -63.946 deg, J6= 28.200 deg

};

P[2]{

GP1:

UF : 9, UT : 9, CONFIG : ’N U T, 0, 0, 0’,

X = 1.632 mm, Y = -67.788 mm, Z = 73.203 mm,

W = -165.352 deg, P = -21.879 deg, R = 21.809 deg

};

...

...

...

P[439]{

GP1:

UF : 9, UT : 9, CONFIG : ’N U T, 0, 0, -1’,

X = -1.638 mm, Y = -138.500 mm, Z = 143.912 mm,

W = -165.328 deg, P = 21.824 deg, R = -21.741 deg

};

/END

Listing 5.5: Code snippet of modified R-30iA post processor output

Chapter 6

Testing of robotic arm program

All life is an experiment. The more experiments you make the better.

Ralph Waldo Emerson

American essayist

Firstly, this chapter deals with the simulation of the LSP process in RoboDK. Sec-

ondly, it focuses on testing the robotic arm program on the physical robotic arm. The

goal of the testing is to evaluate the effectiveness of the solution realised in the CAM

program RoboDK. The robotic arm cell used for simulation and testing is depicted in sec-

tion 3.2.1 – LSP station layout. A forging die is used as a test sample. Figure 6.1 shows

a CAD drawing of the forging die. Figure 6.1 also highlights the areas to be treated by

the LSP process in black and the approach/retreat motions in green. The area treated by

LSP is made up of a line of consecutive laser shots. Information about the location of the

areas to be treated by the LSP process is usually provided by the manufacturers based

on experience from the factory floor. The actual testing described in this chapter was

done with the Litron LPY ST 7875-10 2HG laser and the FANUC M-20iA/20M robotic

arm.

6.1 Simulation

The simulation process can be broken down into several steps:

1. create a robot machining project in RoboDK, so it mirrors the actual robotic arm

workcell,

57

58 CHAPTER 6. TESTING OF ROBOTIC ARM PROGRAM

2. set up the curve follow project, set appropriate collision checking parameters and

successfully solve robotic arm path,

3. set appropriate simulation parameters and run simulation, generate robotic arm

program with RoboDK,

4. if simulation is successful, continue with testing on physical robotic arm.

Figure 6.1: CAD drawing of forging die

Figure 6.2 shows a picture of the RoboDK workcell with the forging die mounted onto

the flange of the FANUC M-20iA/20M robotic arm.

Figure 6.2: RoboDK workcell with forging die

6.2. TESTING ON THE PHYSICAL ROBOTIC ARM 59

6.2 Testing on the physical robotic arm

The testing of robotic arm programs on physical robotic arm succeeds the simulation

process and is roughly divided into the following steps:

1. upload program to robotic arm controller,

2. run program on physical robotic arm in test mode (test mode = mode of robotic

arm with reduced maximum speed) and without active laser source,

3. run program on physical robotic arm in production mode (production mode = speed

of robotic arm is not restricted) and without active laser source,

4. run program in production mode with active laser source. The energy of the laser

source is set to a value that is appropriate for the given LSP application.

The parameters chosen for the forging die experiment are listed in Table 6.1.

Table 6.1: Experimental parameters of LSP process on

forging die

Parameter Value

Laser source Litron LPY ST

Wavelength [ns] 1064

Repetition rate [Hz] 1

Pulse energy at sample [mJ] 3000

Beam size at sample [mm2] 4.91

Pulse width @1064nm [ns] 12

Power density at sample [GWcm−2] 5.1

6.3 Results of simulation and testing

6.3.1 Results of simulation

The simulation has been a quick way of testing various ideas by changing the pa-

rameters of the simulation. The simulation has also allowed the author to create large

60 CHAPTER 6. TESTING OF ROBOTIC ARM PROGRAM

programs with the number of points in the order of hundreds. Creating such large pro-

grams manually using a teach pendant would be enormously time-consuming.

Initially, the laser beam was parallel to the surface normal of the forging die. Then, the

angle between the surface normal and the laser beam was changed to achieve a collision-

free simulation. The angle of impact is measured in relation to the surface normal of the

forging die. As a rule of thumb, an angle of impact of fewer than 15◦ does not affect

the result of the LSP process. A simulation that is sufficiently close to the actual LSP

process was created, and the testing continued on the physical robotic arm.

6.3.2 Results of testing on a physical robotic arm

Generally, the program from the simulation does not transition directly to the physical

robotic arm due to minor differences between the simulated and physical workcell. As

a consequence, some tweaks to the robotic arm program were necessary. Therefore, the

following program parameters were alternated:

• the laser beam is tied to a user frame – this user frame origin was shifted,

• the forging die was rotated around the J6 robotic arm joint (the J6 joint is respon-

sible for the rotation of the robotic arm flange).

The testing on the physical robotic arm has been successful – the LSP affected area on

the surface of the forging die has matched the area to be treated by LSP specified in the

simulation. Figure 6.3 shows the actual LSP process performed on the forging die.

Figure 6.3: LSP process performed on the forging die with plasma emitting from the surface

of the material

Chapter 7

Conclusions and future work

Our imagination is the only limit to what we can hope to have in the future.

Charles F. Kettering

American inventor, engineer and businessman

This chapter deals with the conclusions of this graduation thesis and the future work

on this graduation thesis. For the sake of clarity, the goals set in the graduation thesis

assignment and the goals set in Chapter 1 – Introduction are listed separately. The future

work also mentions features that could be incorporated into the post processor to improve

its functionality.

7.1 Conclusions of the thesis and future work on

thesis

Firstly, let us evaluate the goals set in the graduation thesis assignment:

1. get familiar with industrial robotic arm programming methods – goal achieved in

Chapter 2 – Basics of industrial robotics,

2. get familiar with the laser shock peening process and identify the inputs, outputs

and parameters of this process – goal achieved in Chapter 3 – Laser shock peening,

3. design functions that extend the post processor of your chosen CAM software – goal

achieved in section 5.5.1 – Modifying the FANUC R-30iA post processor methods,

61

62 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

4. program the functions that extend the post processor in a higher programming

language of your choice and simulate the robotic arm program in a CAM software

– goal achieved in section 5.5.1 – Modifying the FANUC R-30iA post processor

methods and Chapter 6 – Testing of robotic arm program,

5. verify and document the functionality of the post processor – goal achieved in

Chapter 6 – Testing of robotic arm program,

6. write the graduation thesis in English – goal achieved,

7. prepare the graduation thesis in a problem-based structure corresponding to a sci-

entific document – goal achieved.

Let us recapitulate the goals of this graduation thesis from Chapter 1 – Introduction:

1. creating a simulation of a LSP process in CAM software,

2. developing a post processor for the LSP process,

3. generating a program for the robotic arm controller from simulation,

4. test simulation of LSP process on actual robotic arm controller.

The first goal has been achieved in section 5.2.1 – Setting up a curve follow project in

RoboDK, the second goal in section 5.5.1 – Modifying the FANUC R-30iA post processor

methods. The third goal has been achieved in section section 5.5.2 – Example output of

modified FANUC R-30iA post processor and finally, simulation and testing on a physical

robotic arm has been demonstrated in Chapter 6 – Testing of robotic arm program.

This thesis addresses the problem of modifying a FANUC robotic arm controller post

processor for LSP applications. One of the main contributions of this thesis is to simplify

the generation of robotic arm controller programs. In this thesis, programs are generated

using the CAM program RoboDK. The creation of a robotic arm program manually is

a tedious process, especially for parts with complex geometries. From an experimental

point of view, the contribution lies in testing the programs generated with the help of

the CAM program RoboDK.

In the future, the post processor could be improved by incorporating the following

features:

7.1. CONCLUSIONS OF THE THESIS AND FUTURE WORK ON THESIS 63

• implementation of Remote Tool Centre Point functionality (RTCP). RTCP ensures

a constant robotic arm speed with respect to the surface of the sample in case

a static tool is used,

• constrain the angular speed of robotic arm joints to a specific limit so that the

robotic arm motions will be smoothed.

64 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] K. Ding and L. Ye. Laser shock peening performance and process simulation. Wood-

head Pub., 2006.

[2] R. M. White. “Elastic Wave Generation by Electron Bombardment or Electromag-

netic Wave Absorption”. In: Journal of Applied Physics 34.7 (1963), pp. 2123–2124.

doi: 10.1063/1.1729762.

[3] Frank Neuman. “Momentum Transfer And Cratering Effects Produced By Giant

Laser Pulses”. In: Applied Physics Letters 4.9 (1964), pp. 167–169. doi: 10.1063/

1.1754017.

[4] R. Fabbro et al. “Physical study of laser-produced plasma in confined geometry”.

In: Journal of Applied Physics 68.2 (1990), pp. 775–784. doi: 10.1063/1.346783.

[5] Air Force Research Laboratory. Laser Shock Peening – The Right Technology at The

Right Time. url: http://www.dtic.mil/dtic/tr/fulltext/u2/a487687.pdf.

Online; accessed 08-07-2021.

[6] Y. Sano. Progress in Laser Peening Technology for Applications to Infrastructure

and Energy Systems. Paper presented at the conference of 4th Int. Conf. on Laser

Peening, Madrid. 2013.

[7] J. Skařupa. Pr̊umyslové roboty a manipulátory. Edičńı středisko VŠB – TUO, 2007.

isbn: 978-80-248-1522-0.

[8] Gareth J. Monkman. Robot grippers. Wiley-VCH, 2007.

[9] Alex Owen-Hill. The Pros and Cons of 5 Robot Programming Methods. url: https:

//robodk.com/blog/robot-programming-methods-pros-and-cons/. Online;

accessed 28-06-2021.

[10] SYSTEM R-30iB and R-30iB MATE HandlingTool Setup and Operations Man-

ual. 8th ed. FANUC America Corporation. 3900 W. Hamlin Road Rochester Hills,

Michigan 48309–3253, 2014.

65

66 BIBLIOGRAPHY

[11] Robot simulation and offline programming. url: https : / / www . delfoi . com /

delfoi-robotics/offline-programming/. Online; accessed 28-06-2021.

[12] C. Brent Dane et al. “High Power Laser for Peening of Metals Enabling Production

Technology”. In: Materials and Manufacturing Processes 15.1 (2000), pp. 81–96.

doi: 10.1080/10426910008912974.

[13] B.P. Fairand. “Quantitative assessment of laser-induced stress waves generated at

confined surfaces”. In: Journal of Applied Physics 25.8 (1974), pp. 431–433. issn:

0021-8979.

[14] Marek Bohm et al. “Robotic Arm Human-Machine Interface For Laser Shock Peen-

ing Applications”. In: MM Science Journal 2019.05 (2019), pp. 3643–3646. doi:

10.17973/mmsj.2019_12_2019115.

[15] R. Fabbro et al. “Physics and applications of laser-shock processing”. In: Journal

of Laser Applications 10.6 (1998), pp. 265–279. doi: 10.2351/1.521861.

[16] Allan H. Clauer and David F. Lahrman. “Laser Shock Processing as a Surface

Enhancement Process”. In: Key Engineering Materials 197 (2001), pp. 121–144.

doi: 10.4028/www.scientific.net/kem.197.121.

[17] Xin Hong et al. “Confining medium and absorptive overlay”. In: Optics and Lasers

in Engineering 29.6 (1998), pp. 447–455. doi: 10.1016/s0143-8166(98)80012-2.

[18] Jan Kaufman. “Influence of Laser Shock Peening on corrosion resistance and stress

corrosion cracking of aluminum alloy 5083”. MA thesis. Czech Technical University,

2018.

[19] Allan H. Clauer, John H. Holbrook, and Barry P. Fairand. “Effects of Laser Induced

Shock Waves on Metals”. In: Shock Waves and High-Strain-Rate Phenomena in

Metals (1981), pp. 675–702. doi: 10.1007/978-1-4613-3219-0_38.

[20] J. A. Bolger, C. S. Montross, and A. V. Rode. “Shock waves in basalt rock generated

with high-powered lasers in a confined geometry”. In: Journal of Applied Physics

86.10 (1999), pp. 5461–5466. doi: 10.1063/1.371546.

[21] Jean-Eric Masse and Gérard Barreau. “Laser generation of stress waves in metal”.

In: Surface and Coatings Technology 70.2-3 (1995), pp. 231–234. doi: 10.1016/

0257-8972(95)80020-4.

BIBLIOGRAPHY 67

[22] L. Berthe et al. “Wavelength dependent of laser shock-wave generation in the water-

confinement regime”. In: Journal of Applied Physics 85.11 (1999), pp. 7552–7555.

doi: 10.1063/1.370553.

[23] D. Devaux et al. “Generation of shock waves by laser-induced plasma in confined

geometry”. In: Journal of Applied Physics 74.4 (1993), pp. 2268–2273. doi: 10.

1063/1.354710.

[24] C. Brent Dane et al. “High Power Laser for Peening of Metals Enabling Production

Technology”. In: Materials and Manufacturing Processes 15.1 (2000), pp. 81–96.

doi: 10.1080/10426910008912974.

[25] Vaccari J.A. “Laser shocking extends fatigue life”. In: American Machinist 62-–4.

(1992).

[26] Allan H. Clauer. “Laser Shock Peening, the Path to Production”. In: Metals 9.6

(2019), p. 626. doi: 10.3390/met9060626.

[27] HiLASE centre. Laser system ’BIVOJ’. 2021. url: https://www.hilase.cz/

wp-content/uploads/bivoj_visualization-no-text-1170x484.jpg. Online;

accessed 28-06-2021.

[28] B. Saumyabrata. “DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosec-

ond Yb:YAG laser”. In: Optics Express 23.15 (2015), pp. 19542–19551. issn: 1094-

4087.

[29] Litron LPY SERIES High and Ultra-High Energy Q-Switched Nd:YAG Lasers. url:

https://litron.co.uk/wp-content/uploads/2020/11/LPY-Series-November-

2020.pdf. Online; accessed 02-04-2021.

[30] LPY600 Laser Series Operators handbook version. 1st ed. Litron Lasers. 8 Consul

Road, Rugby,Warwickshire, CV21 1PB England, 2004.

[31] FANUC M-20iA/20M. url: https://www.robots.com/robots/fanuc-m-20ia-

20m. Online; accessed 02-04-2021.

[32] FANUC I/O Unit-MODEL A. Connection and maintenance manual. 4th ed. FANUC

America Corporation. 3900 W. Hamlin Road Rochester Hills, Michigan 48309–3253,

Apr. 2005.

[33] RobotWorx. FANUC M-20iA/20M. 2021. url: https://www.robots.com/images/

robots/Fanuc/M-Series/FANUC_M-20iA_20M_cutout.png. Online; accessed 28-

06-2021.

68 BIBLIOGRAPHY

[34] Dan Mihai. RoboDK: An Offline Programming and 3D Simulation Software for

Industrial Robots. 2015. url: https://www.smashingrobotics.com/robodk-

industrial-robot-offline-programming-simulation-software/. Online; ac-

cessed 28-06-2021.

[35] Alex Owen-Hill. 9 Powerful RoboDK Features You Might Not Know About. 2020.

url: https://robodk.com/blog/powerful-robodk-features/. Online; accessed

28-06-2021.

[36] RoboDK. RoboDK documentation: Getting started – Select a robot. 2021. url:

https://robodk.com/doc/en/Getting- Started- Select- robot.html. On-

line; accessed 28-06-2021.

[37] RoboDK. RoboDK documentation: Basic guide. 2021. url: https://robodk.com/

doc/en/Basic-Guide.html. Online; accessed 28-06-2021.

[38] RoboDK. RoboDK documentation: Getting started – New project. 2021. url: https:

//robodk.com/doc/en/Getting-Started-Select-robot.html. Online; accessed

28-06-2021.

[39] RoboDK. RoboDK documentation: RoboDK Add-In for SolidWorks. 2021. url:

https://robodk.com/doc/en/Plugin-SolidWorks.html#PluginSolidWorks.

Online; accessed 28-06-2021.

[40] RoboDK. RoboDK documentation: Collision Detection. 2021. url: https://robodk.

com/doc/en/Collision-Avoidance.html. Online; accessed 05-07-2021.

[41] RoboDK. RoboDK documentation: Post Processors. 2021. url: https://robodk.

com/doc/en/Post-Processors.html#PostProcessor. Online; accessed 28-06-

2021.

[42] FANUC America. FANUC Roboguide simulation software. 2021. url: https://

www . fanucamerica . com / products / robots / robot - simulation - software -

FANUC-ROBOGUIDE. Online; accessed 05-07-2021.

[43] FANUC Robotics SYSTEM R-30iA Controller KAREL Reference Manual. 7th ed.

FANUC America Corporation. 3900 W. Hamlin Road Rochester Hills, Michigan

48309–3253, 2010.

[44] RoboDK. RoboDK documentation: Robot Manufacturing – Robot Machining project.

2021. url: https://robodk.com/doc/en/Robot-Machining.html#MachiningProject.

Online; accessed 05-07-2021.

BIBLIOGRAPHY 69

[45] RoboDK. RoboDK documentation: Robot Manufacturing – Curve Follow Project.

2021. url: https://robodk.com/doc/en/Robot-Machining.html#CurveFollow.

Online; accessed 05-07-2021.

[46] RoboDK. RoboDK documentation: RoboDK API. 2021. url: https://robodk.

com/doc/en/RoboDK-API.html#RoboDKAPI. Online; accessed 28-06-2021.

[47] RoboDK. RoboDK documentation: RoboDK API – Python API. 2021. url: https:

//robodk.com/doc/en/RoboDK-API.html#PythonAPI. Online; accessed 05-07-

2021.

[48] RoboDK. RoboDK documentation: Post Processors – Reference. 2021. url: https:

//robodk.com/doc/en/Post-Processors.html#RefPostProc. Online; accessed

05-07-2021.

[49] RoboDK. RoboDK API documentation: Post Processors – Post Processor Methods.

2021. url: https://robodk.com/doc/en/PythonAPI/postprocessor.html#

post-processor-methods. Online; accessed 05-07-2021.

[50] RoboDK. RoboDK API documentation: Post Processors – Select a post processor.

2021. url: https://robodk.com/doc/en/Post-Processors.html#SelectPost.

Online; accessed 05-07-2021.

[51] R. Bernstein. python-decompile3. Version 1.0. July 2021. url: https://github.

com/rocky/python-decompile3. Online; accessed 05-07-2021.

Appendices

I

Appendix A

Content of the enclosed CD/DVD

This thesis is accompanied by a CD/DVD with the following directory structure.

Graduation thesis in LATEX2e

RoboDK project

RoboDK FANUC post processor source code

3D CAD model of forging die

Bohm AP 2021 2022.pdf

FANUC R-30iB robotic arm controller program for LSP process

III

IV APPENDIX A. CONTENT OF THE ENCLOSED CD/DVD

Appendix B

Used software and software libraries

LATEX2ε 〈https://miktex.org〉

RoboDK 〈https://robodk.com/〉

Python 〈https://www.python.org/〉

decompyle3 〈https://github.com/rocky/python-decompile3/〉

SolidWorks Professional 2019 〈https://www.solidworks.com/〉

VSCodium 〈https://vscodium.com/〉

Thonny 〈https://thonny.org/〉

FANUC Roboguide 〈https://www.fanucamerica.com/〉

The software from the above list is either freely available or its license is owned by the

HiLASE centre, Dolńı Břežany, Za Radnićı 828, where the author worked at the same

time and created this graduate thesis.

V

VI APPENDIX B. USED SOFTWARE AND SOFTWARE LIBRARIES

Appendix C

Graduation thesis timetable

Activity Duration Closing Fulfilled

date

Ordering RoboDK software 2 weeks 13.09.2021 26.09.2021

Designing electrical connection between con-

troller and laser

2 weeks 27.10.2021 10.11.2021

Building of electrical connection between

controller and laser

2 weeks 11.10.2021 24.10.2021

Creating of RoboDK project 3 weeks 25.10.2021 14.11.2021

Modifying RoboDK post processor 4 weeks 15.11.2021 12.12.2021

Graduation thesis: chapter Introduction 2 weeks 13.12.2021 27.12.2021

Graduation thesis: complete text 15 weeks 30.04.2022 30.04.2022

VII

VIII APPENDIX C. GRADUATION THESIS TIMETABLE

Appendix D

English-Czech glossary

English Czech

cavitation erosion kavitačńı opotřebeńı

collision detection detekce koliźı

decompiler dekompilátor

dielectric breakdown pr̊uraz dielektrika

end effector efektor

fatigue life únavová životnost

flashlamp výbojka

forging die kovaćı zápustka

Gaussian temporal profile gaussovský časový pr̊uběh laserového impulzu

GUI (Graphical User Interface) grafické uživatelské rozhrańı

laser beam spot size velikost laserového svazku

laser power density intenzita zářeńı laseru

laser pulse temporal profile časový pr̊uběh laserového impulzu

laser shock peening laserové vyklepáváńı

laser-induced plasma laserem generované plazma

Nd:YAG krystal YAG dopovaný neodymem

offline programming offline programováńı

post processor postprocesor

Q-switching Q-sṕınáńı

IX

X APPENDIX D. ENGLISH-CZECH GLOSSARY

English Czech

residual stress zbytkové napět́ı

robotic arm gripper uchopovač robotického ramene

robotic arm teach pendant manuálńı ovladač robotického ramene

shock wave rázová vlna

tool center point středový bod nástroje

yield strength mez pr̊utažnosti

